Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Error Correction
[/vc_column_text][vc_column_text] Abstract:
The use of error-correction codes (ECCs) with advanced correction capability is a common system-level strategy to harden the memory against multiple bit upsets (MBUs). Therefore, the construction of ECCs with advanced error correction and low redundancy has become an important problem, especially for adjacent ECCs. Existing codes for mitigating MBUs mainly focus on the correction of up to 3-bit burst errors. As the technology scales and cell interval distance decrease, the number of affected bits can easily extend to more than 3 bit. The previous methods are therefore not enough to satisfy the reliability requirement of the applications in harsh environments. In this paper, a technique to extend 3-bit burst error-correction (BEC) codes with quadruple adjacent error correction (QAEC) is presented. First, the design rules are specified and then a searching algorithm is developed to find the codes that comply with those rules. The H matrices of the 3-bit BEC with QAEC obtained are presented. They do not require additional parity check bits compared with a 3-bit BEC code. By applying the new algorithm to previous 3-bit BEC codes, the performance of 3-bit BEC is also remarkably improved. The encoding and decoding procedure of the proposed codes is illustrated with an example. Then, the encoders and decoders are implemented using a 65-nm library and the results show that our codes have moderate total area and delay overhead to achieve the correction ability extension.