This paper presents a ternary low-density parity-check (LDPC) error correction system for wireless electrocardiogram sensors to improve the accuracy of arrhythmia classification. The classification system is based on ternary Delta-modulated bitstreams and rotation linear kernel support vector machines, which identifies the supraventricular ectopic beat (SVEB) and the ventricular ectopic beat (VEB) over the normal heartbeats. We model errors using a ternary symmetric channel with probability parameter p and construct a variety of ternary LDPC codes with different coding rates by concatenating two-component sub-matrices to form a parity-check matrix with a quasi-cyclic structure that facilitates the hardware design. In particular, a hardware-friendly LDPC encoder circuit is proposed that leverages the highly structured parity-check matrix to perform serial generation of the parity symbols using an accumulator and a look-up table. The encoder circuits are implemented on FPGA and synthesized on ASIC using a 32 nm CMOS process. Simulation results show that the ternary LDPC codes can significantly improve classification accuracy in the presence of errors. For example, with an error probability of up to 21% in the sensor output bitstreams, the classification accuracy remains above 99% with the proposed error correction system.
Software Implementation:
Modelsim
Xilinx
” Thanks for Visit this project Pages – Register This Project and Buy soon with Novelty “
Ternary LDPC Error Correction for Arrhythmia Classification in Wireless Wearable Electrocardiogram Sensors